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ABSTRACT

Detection of small targets in the presence of noise and sea clutter interference

presents a formidable task in a radar system design. Conventional radar detection schemes

such as spectral discrimination and noncoherent integration, have been employed with limited

success. This thesis investigates an improved target detection scheme suggested by Carlson,

Evans and Wilson [Ref 1], applicable to search radars, using the Hough transform image

processing technique. The system concept involves a track-before-detect processing method

which allows previous data to help in target detection. The technique provides many

advantages compared to traditional techniques. The improved detectability results from better

use of old energy and which is equivalent to using a three-dimensional filter matched to the

target trajectories in addition to the conventional target parameters. The questions answered

by this thesis concern the effectiveness of the Hough transform in achieving improved radar

target detection and system detection performance, (i.e., probability of detection and false

alarm rate as a function of signal to noise ratio) for small, slow targets. System design

concepts are considered and a full environment simulation including sea clutter and noise is

implemented to determine the algorithm efficiency and performance in various scenarios.
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I. INTRODUCTION

A. BACKGROUND

Detection of small targets in the presence of noise and sea clutter interference,

presents a formidable task in a radar system design. A small Radar Cross Section (RCS)

target (order of 1 m2 or less) should be detected in the presence of wide dynamic range non-

Gaussian sea clutter and thermal noise. As we recall from radar theory, radar detectability

is proportional to the amount of energy returned from the target. Conventional noncoherent

radar signal processing techniques, compare the range azimuth-elevation cell return against

a threshold and make a detection decision based upon the results of this comparison. No past

data is usually saved after the decision process, although some information about the target

might be contained in the discarded data. Detection improvement in those systems is usually

achieved by using a high range resolution waveform combined with a high speed scanning

antenna (60-300 RPM), to perform scan-to-scan integration. The target is extracted from the

clutter background using the fact that target returns tend to correlate from scan to scan, while

the clutter returns tend to decorrelate from scan to scan. Spectral discrimination techniques

using Doppler processing [Ref. 2], are not appropriate for the detection of relatively slow

targets since the target may be stationary or have zero velocity relative to the local mean

surface waves. Detection performance improvement is required to enable successful operation

in the modem environment of reduced RCS targets and restricted Electromagnetic Emission

Control Policy (EECP), which implies brief periods of radar operation.

One approach that shows promise uses a high speed digital processor to implement

a type of processing known as track-before-detect [Ref. 3,4,6,7,23]. As presented in greater

detail in the following chapters, the track-before-detect method uses data taken prior to

thresholding (or detection) which is processed into feasible tentative tracks on a scan-to-scan,

or revisit-to-revisit basis. Measures of the track strength, track quality and other track

parameters are generated for each tentative track, tracks are declared or when appropriate
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thresholds are exceeded. Detection sensitivity improvement using this method comes from

avoiding loss of information caused by premature thresholding and discarding data processed

on prior data scans or revisits. In this way information that takes longer than one scan, or

revisit, to develop can be exploited. Some approaches to the track-before-detect method were

offered by Reed [Ref. 3], and Barniv [Ref. 4], which applied dynamic programming to the

track-before-detect problem.

Carlson, Evans and Wilson [Ref 1] introduced a new method for track-before-detect

which results in improved target detection and applied the method to an air-traffic control

problem, namely detecting high speed targets in a clutter free environment. This thesis

investigates the applicability of this technique for the detection of small low speed targets in

the presence of noise and sea clutter. The technique combines the raw data from multiple

scans and translates them into multi-dimensional time range space using the Hough transform.

The Hough transform which is a curve or a "feature" detector, usually used in image

processing, translates targets that appear as hits or points in the time range space to curves

or "features" in the Hough domain. The method uses the Hough transform and the inverse

Hough transform to extract the detection tracks from the raw radar data. Using this technique

creates a track defined by the detected curve in the Hough domain and reduces the need to

revisit a detected target to accomplish the acquisition process. The proposed method

improves the performance of noncoherent integration from scan-to-scan, from beam-to-beam,

and from range cell-to-range cell.

B. OBJECTIVES

The objective of this thesis, is to investigate track-before-detect signal processing,

applied to the radar returns of small moving or stationary targets, in an additive noise and high

sea clutter background. A major goal is to determine the feasibility of using the Hough

transform to accomplish the track-before-detect function.

It is expected that extraction of targets using the track-before-detect process will

enhance target detection since all the energy returned from the target is correlated prior

2



to thresholding. This is equivalent to using a three dimensional filter which is matched

to the target trajectories, in addition to the conventional target parameters. The questions

to be answered by this thesis concern the effectiveness of the Hough transform in

achieving improved radar target detection. The methodology used in this thesis is as

follows •

An efficient algorithm to perform the Hough transform and inverse Hough

transform was derived;

The detection performance (i.e., probability of detection (Pd) as a function of

Signal to Noise Ratio (SNR) curves, and Pd as a function of probability of false

alarm (Pfa) curves) using the Hough transform process, were determined

parametricaly;

Benchmark performance of an optimal signal processing (using all the target

energy) was determined;

Hough transform processing was compared against the optimum detector in

Rayleigh interference to determine detection loss; and

Hough transform performance as a function of radar and target parameters was

determined.

C. THESIS OUTLINE

The analysis and results associated with the investigation of the above described

problem are presented in the five subsequent chapters. Chapter 11 presents the track-

before-detect concept and the Hough transform technique as an efficient way to

implement track-before-detect in search radars. In Chapter III a theoretical background

for radar detection theory of targets in the presence of thermal noise and sea clutter is

introduced. Chapter IV introduces the algorithm developed in this thesis. The results

obtained using those algorithms and comprehensive comparison between those results and

the theoretical results are discussed in Chapter V. Recommendations and conclusions are

presented in Chapter VI. Finally, the MATLAB computer code for each algorithm is

presented in the appendix.

3
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II. TRACK-BEFORE-DETECT PROCESSING

A. TRACK-BEFORE-DETECT BASIS

Track-Before-Detect (TBD) processing [Ref. 21], has a primary objective of

enhancing target detectability. In contrast to conventional approaches, TBD is an

algorithm for detecting trajectories, as opposed to detecting single dwell target returns and

assembling trajectories from those returns. As a result, TBD is applied over multiple

observation intervals, or dwells, of the radar rather than over the multiple pulse repetition

intervals that constitute an individual dwell. Consequently, the time between updates in

the TBD process is typically in the order of seconds. Significant target motion can occur

between updates making it necessary to associate, over several updates, the resolution

cells that correspond to the target motions. The name track-before-detect is derived from

the fact that a sequence of associated resolution cells, comprising a time history of the

target or track exists before detection is declared. Considering a coherent search radar,

capable of measuring the range, range rate, and azimuth angle of the target, the track-

before-detect algorithm consists of the following set of procedures:

Integration of the received radar signals over the dwell time of the scanning radar

beam;

Comparing the integrated signals in each resolution cell on each scan to an

amplitude threshold, which is set lower than normal;

Over a number of scans N, forming sets of associated cells, called templates,

which correspond to possible target motions;

In each template count the number of scans for which the amplitude threshold is

exceeded, calling this number m;

Applying m out of M test (i.e., declare target detection if in a template mŽM)

where M is a selected integer less than N; and

Continue to form new templates and extend those that have yielded detections by

repeated application of the rules of association.

5



Figure 1, introduced by Schleher [Ref.5], illustrates the TBD concept implemented

as a linear velocity filter for short exposure targets. The figure illustrates normalized

target and sea clutter returns, plotted on a scan to scan basis. The TBD filter is

implemented as a linear velocity template which is matched to a particular target

trajectory. One template is required for each realizable target velocity, consistent with the

radar range resolution. In this example, detection occurs when at least 9 target responses

fall within the linear velocity template set for a target exposure of 6 seconds (12 scans).

False alarm occurs when at least nine random sea spikes and noise match the template

response. To the human eye, a target track is easily visible. However, if only one data set

is viewed at a time it is impossible to tell with much certainty if a target is present or not.

In an automatic detection system [Ref. 6], a detection decision can be made by

thresholding a score that is a function of all the amplitudes along each potential target

160 160 Sea:Clutter or Ndise
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Figure 1. Track-Before-Detect Process.
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trajectory, rather then thresholding after each dwell or revisit, and then trying to make

a decision based on a single data point. A simple scoring function can be defined by

noncoherent integration along the candidate trajectory, in which case the TBD functions

as an adaptive noncoherent integrator which follows the target motion. Thus, the TBD can

be applied in cases where conventional noncoherent integration would be inefficient

because of target motion. TBD exploits the fact that, because of target motion constrains,

the position cell of the target return will be correlated from dwell to dwell, whereas the

positions of the noise spikes will not.

B. THE HOUGH TRANSFORM

The Hough transform, (HT) was first introduced by Paul Hough [Ref. 8] in 1961

as a method of detecting complex patterns in binary image processing. It achieves this by

determining specific values of parameters which characterize these patterns. Spatially

extended patterns are transformed, so that they produce spatially compact features in a

space of possible parameter values. The HT converts a difficult global detection problem

in image space into a more easily solved local peak detection problem in a parameter

space. The key idea behind the HT can be illustrated by considering sets of collinear

points in an image. A set of image points (xy), which lie on a straight line can, be

defined by a relation f, such that

ft( i=,e),(x,y) ) =y-iftx-=O, (2.1)

where m and c are two parameters, the slope and intercept, .which characterize the line.

Equation (2.1) maps each value of the parameter combination (mc) to a set of image

points. The HT uses the idea that Equation (2.1) can be viewed as a mutual constraint

between image points and parameter points, and therefore, it can be interpreted as

defining a one to many mapping from an image point to a set of possible parameter

values. This corresponds to calculating the parameters of all straight lines, which belong

to the set that passes through a given image point (xy). This operation is called back-

projection of the image point; the definition relation which achieves this is given by

7



g((iy),(m,c))) =4-m -c =0. (2.2)

In the case of a straight line, each image point (xy) back-projects or defines a straight

line in the (mc) parameter space. Figure 2a is a typical point image, and Figure 2b shows

the parameter lines produced by back-projecting the image points into parameter space

using Equation (2.2). Points which are collinear in image space all intersect at a common

point in parameter space, as demonstrated in Figure 2c, where the coordinates of this

parameter point characterizes the straight line connecting the image points. The HT

identifies those points of intersection in the parameter space. Determination of the point

of intersection in the parameter space is a local operation, which is considerably easier

than detecting extended point patterns in image space. The extension of the method to

detect parametericaly defined image curves, other than straight lines, is straightforward.

Image points on a curve, characterized by n parameters a,..., a , can be defined by an

equation in the form of

ft((a,. ..,a),(x,y)) =0. (2.3)

By interchanging the roles of the parameters and variables, Equation (2.3) can be used

to derive the defining relations for the back-projection mapping of image points to

parameter space

g((a1,...a n),(x,y)) =0. (2.4)

This back-projection equation maps out a hypersurface in the n-dimensional parameter

space. The most probable parameters for image curves are indicated by the intersection

of several of those hypersurfaces.

8
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Duda and Hurt [Ref. 8] suggested that straight lines might be usefully parameterized by

the length p, and the orientation, 0, of the normal vector to the line from the image origin

given as

p =x cos(0)+y sin(0). (2.5)

This has distinct advantage over the (mc) parameterization which has a singularity for

lines with large slopes, i.e., m--o. Using the (p,O) parameters means that image points

map into sinusoidal curves in a two parameter space.

Once the HT has been accumulated, the pattern of the counts in the accumulator

is analyzed to estimate the presence and location of the local peaks. The most common

method is to determine a global threshold. Any accumulator cell with more counts than

the threshold indicates a possible occurrence of the search for shape. The threshold is

chosen either using prior knowledge, or it can be automatically selected by analyzing the

distribution of counts in the array , e.g., a fixed fraction of the maximum count on any

single accumulator bin. The shortcomings in the HT, as presented by Hunt [Ref. 19], are;

The HT suffers from performance degradation due to presence of noise in the

image plane;

The HT tends to favor long lines at the expense of short lines, that is a result of

the peak detection embedded in the back-projection to the image plane; and

The HT implicitly assumes uniform distribution of the noise.

As a result, image planes that are contaminated with noise, or containing objects with

almost but not quite parallel edges, will suffer from performance degradation.

C. USE OF THE HOUGH TRANSFORM IN SEARCH RADAR

Traditional search radars provide range, azimuth, elevation and Doppler data as

functions of time, where time is quantized by the scan period, and the coverage sector is

searched by sequentially looking in all beam directions. Conventional radars usually apply

noncoherent integration and M-out-of-N decision rule, so that a target is declared if the

returns for a beam position and a range gate are above a predefined threshold. When
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considering a moving target that could move from one detection cell to another, the

integrating efficiency drops; this problem is known as the range-walk problem. The Hough

transform, as discussed in the previous subsection, is a curve or a "feature" detection method

which is well suited to locating lines in a plane of noise. When using conventional maritime

radars, the effective information is usually obtained through time domain analysis,where

features are mainly due to sea clutter and clutter characteristics which makes the

discrimination between the target and the clutter a difficult task. Sampling of a radar power

returns from a target and analyzing them in the time-range plane, leads to a curve which

represents the target trajectory (where the amplitude of the curve represents the returns

power level). Detection of this curve reveals all the current information about the detected

targets. Figure 3 shows an example of a 20 knots radial velocity target in the time-range plane

for a particular beam and Doppler bin. The slope of the line is determined by the velocity of

the target. Stationary target, or stationary clutter, would appear as horizontal lines in this

space. All moving targets would have some finite slope approaching zero, as the target moves

faster. The time axis runs from the past to the current time and contains the number of scans

integrated. The target movement, which defines a line in the time-range domain, can be

defined by the angle 0 of its perpendicular, from the origin and the distance p from the origin

to the line along the perpendicular, as demonstrated in Figure 3. The Hough transform map

points in the time-range space into curves in the Hough parameter space (0, p) by

p =r cos0 +t sinO. (2.6)

The r and t in this equation are measured from the origin of the time-range space. The

mapping to the Hough space is done by stepping through 0 from 0' to 180 °and calculating

the corresponding p. Carlson, Evans and Wilson [Ref 1] have shown that by trigonometric

manipulation, Equation (2.6) can be expressed as

p= r+ sin(0+atan-f). (2.7)
t
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P *

Range (in ft)

Figure 3. Time-Range Space Geometry and the Corresponding Hough Parameters.

Equation (2.7) leads to a sinusoid with amplitude and phase depending on the r-t value of the

mapped data point. Figure 4 shows the Hough transformation of the data points in Figure 3.

It can be observed that each p-0 point in the Hough space represents a single straight line in

the r-t space with the corresponding p-0 value. Each of the curves in the Hough space

represents the set of all possible lines in the r-t space that cross the corresponding data point.

The line in the r-t domain that connects all the data points corresponds to the point of

intersection of all the mapped sinusoid in the Hough space. The time-range space is divided

into cells equal to the number of range gates times the number of scans being considered.

Convenient way for mapping the time -range space to the Hough space using simple matrix

multiplication was offered by Carlson, Evans and Wilson [Ref 1] as follows:
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Figure 4. Hough Parameter Space Corresponding to Figure 3 Data Points.

A data matrix RTcomprised of radar returns in the time-range space is defined, such that the

columns contain I radar range returns and the corresponding time value for a particular

antenna direction

FIr2 r 3 r,]

RT= (2.8)
11t 12 1 3 1¢ 1

Now a transformation matrix H is defined as the combination of all the sines and cosines, as

defined in Equation (2.6)
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cosO1 sinO1

cosO sinO
2 2

H= (2.9)

cosO sinO
N N

where 0 takes N values from 0' to 1800 using predefined resolution cells. Determination

of the resolution cells is resolved by the simulation and will be discussed in Chapter IV.

The multiplication of RT and H gives a N by I matrix R containing the values of p for

the different data points. The subscripts of p values represent the index numbers of the

data point transformed and the angle 0 used in the Hough mapping

P1,0 1  91

R= H*RT= (2.10)

P 1,0N 
N N ,

Each column of the matrix R represents the N p values for each one of the Hough space

sinusoid. It is clear that the more data points in the image plane we have the bigger R and

RT will be, resulting in heavier computational load. The transformation matrix is

precomputed, and its size depends only on the parameter space quantization.
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III. RADAR DETECTION THEORY

A. OPTIMUM DETECTION PROCESS

An optimum receiving process for a return signal of known form with unknown

phase, which may be used as a reference for comparison of radar detection performance,

is diagrammed in Figure 5.

Known Known Time of Desired Pd and
Spectrum Unknown Phase Peak Signal Pfa

Receiver Envelope Time Gate Threshold
(matched filter Detector

Figure 5. Optimum Unknown Phase Detection Process.

All signal parameters, except carrier phase, are known exactly. The receiving filter is

matched to the signal spectrum. When the signal envelope out of the filter reaches its

maximum value, the signal to noise average power ratio is equal to the ratio of total

received signal energy to the noise spectral density. The ratio of signal power at the peak

of the carrier cycle to rms noise is twice as great and is taken into account in setting the

15



detection threshold. This system will be used to establish .the detection performance of

a conventional detection process and enables comparison to the Hough based detectors.

1. Detection Performance of an Optimum Detection Process.

Consider a sine wave signal present, along with Gaussian noise (with mean

a and variance aj), in the input to an IF filter. The resulting output of an envelope

detector (with amplitude r) is Ricean, i.e., the density function for R is

r e ( (r2+a2) 
(_ar)p,(r) 2 -2 0x -2- (3.1)

a 22 (Y
n n n

where Io(z) is the modified Bessel function of zero order and argument z. We use the

transformations

2 2
a r

R2 2' Y=-2 (3.2)
2u2  20Cy

n n

where R corresponds- to the signal to noise ratio and y to the normalized output of a

square law device. Probability of detection is defined as the probability of y exceeding

a threshold level C, given x and is obtained by the equation

P[y>fI R] = fexp[-(y+R)]1 0(2VRy)dy. (3.3)

In the absence of target, i.e., noise-only case, R=O and we obtain the probability of false

alarm as

P=f exp(-y)dy. (3.4)

If instead of a single observation, N observations y,, n= 1,2 ... , N, of the output of a

square law device with corresponding signal to noise ratio are made and summed, then

N

the probability that the sum y =E y exceeds a threshold • for specified R,, is given by
n= n
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P k• •P(Y>ý I RlR,"RN ..Rd 2 exp[-(y-N/)]/-x 2Vý d,, (3.5)

where N

R E . (3.6)

2. Albersheim's Detection Equation

Walter Albersheim [Ref. 9] derived a simple formula for signal to noise ratio,

which is required to achieve a given level of performance for envelope detection of

nonfluctuating signal, in narrow band noise. Despite its simplicity, this empirical equation

is remarkably accurate. The equation replaces the use of many graphs and cumbersome

calculations. The Albersheim equation is given as

S4.54

SNR=-51log10 M + 6.2 + '- ]log,(A+0.12AB+1.7B), (dB) (3.7)

where

A=4n 0.62),

B nf 
(3.8)B=4• 1~a =dnP-ln(1 -P ).

M is the number of independent pulses, Pd detection probability and Pf the false alarm

probability.

3. Collapsing Loss

Practical radar systems can seldom preserve their full RF signal through the

integration and thresholding process. Consider n video samples containing signal plus

noise integrated along with m extra samples of noise alone. Collapsing loss [Ref. 19] is

defined as the additional signal to noise ratio required to provide a specific detection
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performance (Pd, Pfa) for the n+m signal plus noise variates, as compared to that required

in the case of n signal plus noise variates and is given as

L -= 10 log ( ,R (3.9)
1

where R, is the required signal plus noise ratio with m extra noise variates and R2 is the

signal to noise ratio required with no extra noise variates. The resulting collapsing ratio

p is defined as

n+m m
p - = 1+-. (3.10)

n n

Several empirical methods are available for estimating the collapsing loss. The

most highly developed method is Batron's method [Ref. 10], which uses the concept of

an empirically determined detector loss function. To carry on with the Barton method, it

is necessary to introduce a quantity called the detectability factor, which is defined as the

ratio of single pulse energy to noise power per unit bandwidth, that provides stated

probabilities of detection and false alarm. The notation for the detectability factor is Di(n),

where i=0, 1, 2, 3, 4 identifies either a steady case (0) or a Swerling type fluctuating

target (1, 2, 3, 4), while n indicates the number of pulses which are incoherently

integrated. The detectability factor for a fully coherent detection is Dc(n). The empirically

determined detector loss Cn(x) is given by

[D0(n)+2.3p]

n = Do(n)

From the definition of the detector loss, the n-th pulse incoherently integrated detectability

factordis given by

D (1) C (n)

Do(n) = .n (3.12)
n

Substituting Equation(3.11) into Equation (3.12) and solving for Do(n) results in
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De~l) I l+.2np]

Do(n) c 2n 1 + (3.13)

The additional signal to noise ratio required, as compared to coherent integration, can be

expressed in terms of integration loss given by

S9.2n1+ 1+ -
nD0 (n) D (1)

L.(n) = - -. -* (3.14)
0Do(1) | 9.2

1+ I+ D(1)

This can be used to find the collapsing loss which is given by

1+ 1 +9.2np
L (p n) D C(1)

L (pn)= - = _( (3.15)C L (n) 9.2n
1+• 1+•

D (1)
c

A coherent detection curve for Dc (1), in terms of Pd and Pfa is achieved using empirical

results and are given in [Ref. 10].

B. DOUBLE THRESHOLD PROCESS DETECTION PERFORMANCE

Double threshold, or M-out-of-N detection algorithm, is widely applied in search

radars. In this process, a fixed group of N pulses is applied to a detector threshold ý. A

detection is declared if the number of threshold crossings within the group exceeds a

secondary threshold M. For a nonfluctuating target, it was shown that the M-out-of-N

probability of detection PD, is related to the single pulse probability of detection Pd, by

the binomial relation

19



N

D =M NJ ()k(l _)N-k (3.16)

In the absence of a signal, the probability of a false M-out-of-N detection, due to noise,

PFA, is similarly related to the single pulse probability of detection Pfa by

N
-p N, (fklP)k. (3.17)

FA N-k
kf

The single pulse probability of false alarm is related to the threshold level • by

pfa = exp(-T1), (3.18)

where

)(2TI = -- )2. (3.19)
12

a, is the standard deviation of the noise, and ý the threshold setting. Since it is developed

in the absence of any signal except for that due to system noise, Equation (3.17) is

directly valid for all target fluctuation cases (Swerling cases).

1. Probability of Detection for Nonfluctuating Target

The nonfluctuating target has been modeled by Marcum [Ref. 11], wherein each

pulse of a group of N pulses is of constant amplitude. The probability density function

of such a process is Ricean distributed and may be written in terms of the single pulse

probability of detection

r r +a ar
P d=f - 2exp~ rY2 1 0f2L'dr. (3.20)

Equation (3.20) can be recognized as the Marcum Q function. Thus, it follows from

20



Equations (3.16) and (3.20) that for the nonfluctuating case

DMS = [Q(RT,n)k[1 QRl )Nk (3.21)

where Q(R,rI) is the Marcum Q function, and R normalized signal to noise ratio as

defined by Equation (3.2).

2. Probability of Detection for Swerling Case I Target

The slowly fluctuating target has been described by Swerling as one in which

pulses are perfectly correlated within the integration time but are scan to scan

independent. For this analysis, the Swerling case I target may be considered to be a series

of N Marcum model pulses accruing successively but with statistically independente

amplitudes from scan to scan. If we assume that statistics of this amplitudes variation are

Rayleigh distributed, we can write

PI =f exp( --_- PDM(R) dR, (3.22)

0

where PDM (s) is the Marcum case detection probability, and G the average power signal

to noise ratio. Combining Equations (3.21) and (3.22), we obtain PDI, the detection

probability for Swerling case I target

P = R xp N Q(R11)kj _QRTN-kpE k=M -Q(Rrj)]-dR. (3.23)

0

C. DETECTION PERFORMANCE IN THE PRESENCE OF SEA CLUTTER

1. K Distributed Clutter Model

For radars in which the dimension of the range resolution cell is much greater than

the sea swell wavelength with grazing angles greater than about 100, it is well known

that the clutter amplitude is Rayleigh distributed [Ref. 12]. This is the consequence of the

central limit theorem, since the results can be thought of as being the vector sum of two
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randomly phased components from a large number of independent scatterers. As the radar

resolution is increased and for a smaller grazing angle, the clutter amplitude is observed

to develop a longer "tail", and the returns are often described as becoming spiky [Ref. 12,

13, 14]. It has been found from practical measurements over a wide range of conditions

that the clutter returns for a high resolution radar can be well modeled by two

components. The first component is an underlying mean level obeying a chi distribution.

This mean level has a long temporal decorrelation period, which characterizes for

example, the mean level variation in clutter spikes, or the periodic variation in amplitude

as seen when looking up or down the sea swell. The second component is termed the

"speckle" component. This speckle component has a mean level determined by the first

component of the clutter model. The K distribution is derived by averaging the speckle

components over all possible values of the mean level

p(r) p(r/u)p(u)du, (3.24)
0

where p(r) is the overall Probability Density Function (PDF) of the clutter returns, p(u)

is the PDF of the clutter mean level, and p(r/u) is the PDF of the speckle component

.The speckle component is Rayleigh distributed so that

/ 2

p(r/u) - exp - 2 (3.25)
2u2  4u2U

where u obeys a chi distribution and p(u) is given by

2b 2v- 2-2

p(u) - u exp(-b 2u 2), u20, (3.26)r(v)
where r is the gamma function, v is a shape parameter, b2= v/.Q and D=E[u2] is the

average power of the clutter. Substituting Equations (3.25) and (3.26) into Equation (3.26)

yields the K-distribution

V+X

p(r) = 4 •-rvK I(2cr), (3.27)
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where K,(x) is the (v-1)-th order modified Bessel function of the third kind, and c=bl/-2

is the distribution scale parameter. For high resolution sea clutter, values of v are

generally observed in the region 0.1_<v _<0 where vz 0.1 represents a very spiky and v

represents thermal noise. An empirical derived shape factor for an x band radar is offered

by Watts [Ref. 12] and given by

[2 5
log(v) =log log(d- ) + log() + -(3.28)

where dog is the grazing angle in degrees, I is the cross range resolution in meters, i is
1 1

the aspect dependency, which takes value of -- for up or down swell directions, - for
3 3

across swell and 0 for intermediate directions, or no swell, and k describes the
1

polarization effect and takes the value 1 for vertical polarization and - for horizontal
7

polarization.

2. Detection Performance in K Distributed Clutter

The analysis for the detection performance in K-distributed clutter [Ref. 15, 16]

assumes that the detection processing consists of a linear bandpass filter and a square law

detector, followed by a pulse to pulse integrator. This receiver is not optimal for the K-

distributed clutter, but it is widely used in practice, since the detection is easy to

implement. The output of a square law detector is sampled in turn at time intervales HiT

(i=0,l,...,N-1) and then integrated. A test statistic V is compared with a threshold tr to

decide whether or not a target exists. The output of the receiver can be represented by

r(t) = S(t)+C(t)+n(t), (3.29)

where S(t), C(t) and n(t) represent signal, K-distributed clutter and receiver noise,

respectively. They can be expressed as
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S(t) = a(t)cos(G) t) -b(t)sin(e) t),
c c

C(t) = Xc(t)cos(a ct) -yC(t)sin(a Ct), (3.30)

n(t) = x (t)cos(w t) -y (t)sin(o t),

where a(t), b(t), xc(t), xn(t) and yn(t) represent the inphase and the quadrature component

of the signal, clutter, and noise, respectively. They are mutually independent random

processes. Equation (3.29) can be rewritten as

r(t) =[a(t) +x(t)]cos(ai t) -[b(t) +y(t)] sin(a t), (3.31)

where

x(t) = x (t)+x (t),C n 
3.2

y(t) =c(t) +y (t),

are the inphase and quadrature of the clutter plus noise. The average power of x(t) or y(t)

is given by

[X2t] 2 (lp Cn 2 (Ud - p V 2 p2,
Ey t)] = + (3.33)

0

where P3 ,2 is the average power of white noise component, and Q is the average power

of the clutter. The Average Clutter to Noise Ratio (CNR) is given by

vA =- A b2132  2 (3.34)

n n

The test statistic can be defined as

V 2 E [(xi+a) 2 +(y +bi)2], (3.35)12213n i = 0

where xi,y ,ai and bi (i=0,1,...,N-1) are the samples of x(t), y(t), a(t) and b(t), respectively.
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For the convenience of the analysis, u in Equation (3.25) will be regarded as a random

variable. Based on this assumption, the conditional PDF's of the inphase and quadrature

components of the clutter plus noise can be expressed as

p(x/y)= 1 exp -_2(u_ 2_

ý2'n(U 2 p2 2(u + n2

(3.36)

P(Y/U)= 1 exp-_ __

2r( 2+1 2(u 2+ P 2)

The Moment Generation Function (MGF), defined as the Laplace transform of the PDF

of the statistic V in the presence of nonfluctuating target, can be obtained by [Ref. 10]

L(z/u,R) 1 2z 'exp - NRz 2 (3.37)

In the case of a fading target the R in (3.37) is a random variable. For a chi square family

of fluctuating targets the PDF of R is given by
1(k k k-Iexp--_ R

p(R) = P(k) R) R ( (3.38)

where kis the average of R over target fluctuations and k > 0 is a fluctuating parameter

representing the degree of signal fading. The smaller k corresponds to a deeper signal

fading. k can be related to the Swerling's fluctuating model, where k= 1, N, 2, 2N and k=oo

corresponds to Swerling cases 1, 2, 3, 4 and constant target, respectively. The MGF of

test statistic V of the chi square family of fluctuating target can be written as
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L,(z/u) : fL,(zluR) p(R)dR. (3.39)
0

Solving the integral leads to

1+ 1+-•
'13

L V(Z/U) = _ k (3.40)

1+ 1+-+-+ z

n

In the absence of target, i.e., R=O, the MGF becomes
1

L[0°(z(u) = 2 ,zf (3.41)
ý1+ (1+ 2

The conditional false alarm probability can be obtained using the residue technique to

solve the inverse Laplace transform

P ((U) = -_res (z/u)exp(rlz) 1
Ako ' L z , (3.42)

where res [-] denotes residue, il is a decision threshold and Zko (ko=l,2,...) are the poles

of Lo(z/u) lying in the left half plane. Solving Equation (3.42) results in
n,1exp 21

1+,,
pfa (U) (3.43)

n=0 =o nt 1+---

The false alarm probability is then obtained by integrating all possible values of u

obeying chi-distribution in Equation (3.26)
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P =f(u)p(u)du. (3.44)

0

Solving the integral results in the following equation for Pfa

2b2v 1 f U2v -122_ 1
u =p-b 2 u2  2 du,

fa r(m)nnf 1 +2 (3.45)

Calculation of the conditional probability of detection Pd(U) is done similarly with RiO

Pd(u) = -Eres[Lv(z/u) exp(T' Z) 'Zkl], (3.46)
ki

where Zkl are the poles of Lv(z/u) lying in the left half plane. Using Equation (3.46), we

obtain the following equations:

Pd(u) = A exp '9 + x I1 <k<•N,
2 2 N (3.47)

S1+- +

where A and B are defined as

( -1 2 -- + - -k- m- 1 n( 1 + )- n

N-k-1 N-m-2 )3 P kl 2

E = k- )-,-1 n!
M=O N n=O

( k (3.48)( -1 -2) .. 11j( 1 +÷u2 +NW N-k-j 3.8

B n n--}{N -- _ ilE (2 (-1 -) ,_oi- i4+)N!
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In the case of KŽ>N,

Tn 2 NW N-k-n

Pdu) ~(~~)~ex (3.49)
m=N-1 n nO 1+ u +-N-

k ~ 2 kOn

The detection probabilities are obtained by averaging Equations (3.48) and (3.49) over all

possible values of u that is

Pd =fpd(u)p(u)du. (3.50)
0

where p(u) is given by Equation (3.26).
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IV. ALGORITHM DESCRIPTION

A. SYSTEM CONFIGURATION

This chapter discusses the system implementation and the design considerations

of the various parameters used in the simulation. The system block diagram is presented

in Figure 6.

Environmental parameters

Required Rayleigh Noise K-Distributed Target Simulatio Target
SNR simulation Clutter simulationparameters

Radar Time-range c
paramete-rs map i

generation
Environment Simulation

Required Pfa

Transform Track

S.................................

Detectors ITransform I M out of NIPerformance wit • -N--i Detecton/
Evalatio Binry ShemeHough Transform Based DetectorE v l ai nI i a Y I I c ee........................ ...... ....o... ................................ ........................................." . ..•.7 7........

Figure 6. System Configuration.
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The algorithm is comprised of three main blocks. The first block is the radar data

simulation, responsible for generating the time range date map. This block accepts the

following inputs:

Radar system parameters, such as Pulse Width (PW), antenna scan rate, peak

power and system losses;

Environmental conditions such as sea state, radar grazing angle and sea swells

characteristics. Those parameters determine the clutter behavior, as discussed in

Section B; and

Target characteristics, which define the target radar cross section, Swerling case

type, location in space and maneuvering information.

The output of this function is a random variable generated as the coherent sum of the

three components of the radar returns, namely target signal, noise and sea clutter. The

output from the first block serves as the input to the Hough based detector function. This

block performs the task of the Hough transform, inverse Hough transform and system

detection performance evaluation. Conventional detection schemes performance evaluation

is done at the third part of the system and establishes a reference baseline for detection

performance comparison.

B. RADAR DATA SIMULATION

To simulate a maritime radar data map, we need to generate the three main

components of the radar returns, i.e., target signal, noise and sea clutter. We generate

signal plus interference random variable given by

rns=ý (vs_rni)2+rn 2  (4.1)
I q

where vs is the steady signal voltage, rni and rnq are the inphase and quadrature

components of the interference respectively. Two types of targets are considered in this

work, the non fluctuating target and the Swerling type I target. The nonfluctuating target

is modeled as a constant signal, whose amplitude is determined by the radar equation

given as
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PG2X2oL
S -- t (4.2)

(4-n)R

where P, is the radar peak power, G the antenna gain, a the target cross section, R the

detection range and L the overall system losses. To simulate a Swerling I target, we use

a model [Ref. 18] which describes the fluctuation in target amplitude caused by the

changes in target aspect angle, rotation or vibration of target scattering sources, or

changes in radar wavelength. The Swerling case 1 model assumes a Rayleigh target

amplitude fluctuation, which results in an exponential cross section distribution given by

w(C) --=exp ,(4.3)

where - is the target mean radar cross section.

The clutter addressed in this work is sea clutter and considered to be K distributed.

A method of simulating K-distributed clutter introduced by Schleher [Ref. 17], suggests

that the K-distributed random variable is given by

r = u/-2 In(x), (4.4)

where x is a uniformly distributed variable (0-1), u is root gamma (chi) variable defined

as

U- (4.5)b'

where b is a scale parameter, defined by Equation (3.34), and t is a gamma random

variable whose PDF is given by

tv-ie -t

p(t) - tO.(4.6
= (v) en!. (4.6)

Equation (4.6) implies that K-distributed clutter simulation requires the generation of a

gamma random variable of order v. This is done by first generating a gamma deviate

of integer order k and then a second gamma deviate of order v-k, such that, a= v-k< 1.
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The sum of the two gamma variates provides a gamma variable of order v. A gamma

variable of integer order k can be achieved by adding up k exponentially distributed

waiting times, i.e., the logarithms of uniform deviates given by

tlk=-l(x *x. .... *xk), (4.7)

where xiare uniformly distributed random variables (0-1) and tik =-0. The second Gamma

random variable of order v-k is generated using the rejection method, which is a general

technique for generating random variables whose PDF is known and computable. Figure

7 demonstrates the geometrical argument on which the rejection method is based.

A

Jf(t) dt

tO

Figure 7. Rejection Method for Generating Random Deviate t with a Known PDF
p(t).
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We consider a known PDF, p(t) denoted as the shadowed region in Figure 7. The first

step in the rejection method consists of selecting an arbitrary invertible function f(t),

defined as the comparison function, which lies everywhere above the original probability

function. Next consider a point in two dimensions that is uniform in the area under the

comparison function (points a and b in Figure 7). If the test point lies outside the original

probability function, the point will be rejected; if it lies inside the area, it will be

accepted. The accepted points are uniform in the accepted area, so their t values have the

desired distribution. To choose a random point in two dimensions, a test random t is

generated from the comparison function, using a uniform deviate ranging from zero to A,

where A is the area under the comparison function. A second uniform deviate (0-1) is

generated and tested against the ratio q=-P(t) If the deviate is less than q, the variable

t is accepted; otherwise it is rejected. An efficient comparison function for the gamma

random variable is

a-1
t O<_:ýt<_ 1
F(a)

f) =(4.8)
e t_>1

r(a)

Random variables t can be generated from f(t) using the transformation method

t(x) =F -(t), (4.9)

where F1 (t) is the inverse function of the indefinite integral of f(t). Applying Equation

(4.8) to (4.9) and solving results inf 1
t= ar(a)x" a0<t< 1 (4.10)

aF(a)(1 -ln(x)) tŽ 1

p(t)
The rejection criteria is then obtained by computing q= which leads to

Se'-t 0<t<l1

q= 1(4.11)
ta-1t3
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At this point, receiver noise is introduced into the simulation. The noise amplitude is

assumed to be Rayleigh distributed; and therefore, the noise power amplitude is

exponentially distributed (we assume a square law envelope detector). Since the noise

envelope is independent of the clutter, its variance adds to that of the clutter. The

resulting random variable simulating k-distributed clutter with receiver noise is given by

2n= (4.12)rn= U +-• (-2 In(x)).,

where P, is the noise power. Substituting Equation (4.12) into Equation (4.1) and (4.4),

yields the target plus interference random variable given as

rns=, (vs-rn cos(2x d)) 2+(rn sin(2-nxd))2, (4.13)

where x, is uniform distributed random variable.

C. HOUGH TRANSFORM BASED DETECTOR

The Hough transform algorithm transforms data from the time-range space to the

Hough space, using the formulation of Chapter III. Figure 8 presents the configuration of

the time-range space and the Hough space parameters used for the simulations. The time

range space is divided into 128 range gates and a time history composed of 100 scans,

with scan time defined by the radar parameters. This leads to time-range space dimensions

of 128 by 100 for a total of 12800 data cells.
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Figure 8. Time-Range Space and Hough Space Configuration.

Figure 9a is a time-range mesh plot example of an approaching constant target with a radial

velocity of 20 knots and heading of 450, relative to the line of sight. Figure 9b is the same

target with additive Rayleigh noise. The raw data is compared against a primary threshold

whose level is determined by the requirement that the initial probability of false alarm, which

is applied to the data at this point, must allow most of the target returns through with some

noise spikes. The main objective of the primary threshold is to reduce the computation load,

which is linearly proportional to the number of time-range cells crossing the primary

threshold. The primary threshold level, rT, is determined by the desired value of the initial

probability of false alarm (per pulse) in the time-range domain, Pf,, given (for the case of
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additive Rayleigh noise) by

rp -ln(P ). (4.14)
fal

A gray scale plot of the time-range space for a target signal, with additive noise

before and after applying a primary threshold corresponding to Pfal of 10"•, is shown in

Figures 10a and 10b, respectively, where only the region of interest is shown, i.e., the

range cells in which the target exists.

01150a.(

0

0=
0-10 • " ''- •150

-100
50-30 0

Time (sec) Range

(a)
.20-

03

Time (sec) 30 0Range
(b)

Figure 9. Mesh Plot in Image Space for a 20 Knot Target.
(a) Without Noise.
(b) With Additive Rayleigh Noise (SNR=2dB).
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Figure 10. Time-Range Space for 20 Knot Target with Additive Rayleigh

Noise (SNR=5 dB).
(a) Before Primary Threshold.
(b) After Primary Threshold.

The time-range data is now transformed to the 1-lough parameter domain using the

procedure described in Chapter III. The signal power associated with the sinusoidal curve

segments in each cell is now summed noncoherently to give a total cell power. Figure I I a

shows the Hough parameters mesh plot corresponding to the data presented in Figure 9b. The

major peak matches the target trajectory while the smaller peaks are related to the noise; each

peak produces a straight line in the time-range space. Applying a secondary threshold in
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the parameter space leads to target peak detection. The p and 0 values of the peak are used

for the back-projection into the time-range space, as demonstrated in Figure 1 lb.

40-

20-

10
5 0 -0 -00 5 100 5

Rho (a) Theta

0

-5-

S,-10
E
- 15

-20

-25,
0 20 40 60 80 100 120

Range
(b)

Figure 1 1. (a) Hough Space Corresponding to Time-Range Space of Figure 10.

(b) Back-Projection of Detected Target into Time-Range Space.
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1. Binary Integration Hough Transform

Implementing the Hough transform when more than one target is present in the

observed area might result in dynamic range problem [Ref. 1]. If one target is larger than the

other, we get masking of the small target by the large target in the Hough space. This results

from the Hough transform integration approach using the (which performs a noncoherent

summation of the signal power), whereby, a large target peak in the Hough domain will be

much higher than the small target peak. Setting the threshold low enough to detect the small

target will increase the number of false alarms, while increasing the threshold results in losing

the small target. As a result choosing a threshold that allows detection of small targets, while

avoiding detection of false targets, might be a difficult task. Similar problems occur if we

detect targets that have crossing trajectories; as a result the peak of one target will mask the

other target peak. One possible way, discussed by Carlson, Evans and Wilson [Ref 1], to

avoid this problem is to use binary integration in the Hough space. In this method, all the data

points that cross the primary threshold in the time-range space are assumed to have a value

of one and mapped into the Hough space accordingly. This eliminates the difference between

the targets due to their size and results in a target size in the Hough space relative to the

targets trajectory length. Numerous conventional detection schemes which employ a fixed

threshold, or use aM-out-of-N secondary threshold might be used to detect the target peaks.

Using the binary integration method has some disadvantages, since noise or clutter peaks that

cross the primary threshold level might cause a false alarm.

2. Optimum Parameter Selection

Several parameters can affect the performance of the Hough based detector. The first

one is granularity of the parameter space. The optimum granularity is the one that achieves

the desired Pfa without choosing too fine a granularity that splits the target between more

than one cell in the Hough domain. This issue was investigated by applying different

granularity to the Hough transform and observing the effect on the system performance.

Other parameters that should be addressed are the primary and secondary threshold value
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selection. We can choose high primary threshold values, which result in fewer data points

crossing the threshold and less points transformed into the Hough domain. In this case, we

have to use low values for the secondary values, as the target trajectory is comprised of less

points. The other alternative is to use low primary threshold values, which will cause most of

the time-range points to be transformed into the Hough domain and determine high secondary

threshold values to avoid false alarms. Finding the optimum values for detection is done by

using different values of threshold in the simulations and evaluating their detection

performance. Those results are presented in Chapter V.

D. HOUGH TRANSFORM DETECTION PERFORMANCE

Efficient evaluation of the Hough transform based detectors, and a measure of

comparison to the more conventional detectors, is achieved by determining the detection

statistics (i.e., probability of detection as a function of the input SNR for a given Pfa). This

is done for specific radar parameters and for predefined target, noise and sea clutter signal

levels. The detection statistics will enable us to evaluate the target detection range in a given

scenario.

1. Probability of False Alarm

The first step in evaluating the detector performance consists of determining the

probability of false alarm as a function of secondary threshold. False alarm in the Hough

detector is defined as finding a line, or a trajectory, in the Hough domain where no target

exists in the time-range space. To find the probability of false alarm, we use the concept of

"accessible Hough space" introduced by Carlson, Evans and Wilson [ Ref 1] . This quantity

is found by putting a one in all the range time cells of the image space, and then Hough

transf6rming them. The resulting mesh plot is shown in Figure 12 for the Hough parameters

defined in Section B . It can be observed that some cells in the Hough domain have a zero

value which results from the fact that not all the cells in the Hough domain can be

backprojected into the time-range domain, in other words those cells match non-existing

trajectories. "The accessible Hough space" is parameter dependent and has to be calculated
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according to tie granularity of the time-range and the Hough dimensions. To determine the

P,. as a function of secondary threshold, a time-range map with Rayleigh noise was generated

using the simulation procedure described in chapter V. The primary threshold in the time-

range domain is set to a predefined value (several values were tested), and the Hough

transform is applied to this data. Tile number of secondary threshold crossings, divided by the

total number of cells in the accessible Hough space, yields the probability of false alarm. The

secondary threshold is then varied to determine the probability of false alarm, as a function

of the secondary threshold.

200

150-

100,

50-

0

Rho 0Theta

Figure 12. Hough Transform of All Ones in Image Space, demnonstrating the
"Accessible Hough Domain".
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2. Probability of Detection

Detection for the Hough based detector is defined as finding a predefined target

trajectory in the time-range space. To evaluate the detection performance of the system, we

first define a scenario and then test it under those conditions. In the scenario definition, we

simulate a target trajectory in the time-range space, and then combine the simulated Rayleigh

noise and sea clutterwith the target according to the desired SNR. Transformation to

parameter space then gives the corresponding accumulator cell vaiues in Hough space.

Probability of detection is calculated by counting the number of detections achieved in the

appropriate Hough cell divided by the overall number of simulations. As was proposed by

Carlson, Evans and Wilson [Ref. 1], an n by n grid about the expected Hough cell location

is considered, where n is an integer defined in the simulation, and detection is declared as any

secondary threshold crossing within this grid. The proper value for n is determined in the

simulation. The procedure is repeated for different secondary threshold values, corresponding

to different values of Pfa, which will give the system probability of detection as a function of

the SNR for a given Pfa.
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V. RESULTS

A. TEST CASES DESCRIPTION

The simulated radar parameters, specified in Table 1, are typical for land based

high resolution radars. These types of radar are mainly used for small target detection in

the presence of sea clutter and, as such, are potential candidates for the Hough detector

implementation. The algorithm was applied to different scenarios generated in accordance

with the radar parameters, chosen to enable comprehensive evaluation of the system

performance and efficiency. The parameter space for this simulation is taken as 256 by

180 for the p and 0 dimensions. Those parameters, as shown in subsection E, are close

to the optimum choice for the granularity of the parameter space.

Table 1. Simulated Radar Specifications.

Center Frequency 9 GHZ

Pulse Repetition Frequency (PRF) 1000

Pulse Width (PW) 10 nsec

Peak Power 10 MW

Antenna Gain 35 dB

Antenna Speed Table 1. 240 RPM

System Losses 6 dB

Grazing Angle 2'

Polarization Horizontal

Two main test scenarios are considered in this work. The first one consists of a single

target, nonfluctuating or Swerling 1 type, embedded in Rayleigh noise or K-distributed

sea clutter. Several target speeds, heading directions and SNR's are considered to

determine the system sensitivity to those parameters. The second scenario consists of

multiple targets with additive noise and K-distributed sea clutter, with variation in the
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targets relative size, speed and headings. This scenario is intended to evaluate the

performance of the algorithm in which multiple targets present in the time-range space.

B. SINGLE TARGET SCENARIO

1. Additive Rayleigh Noise Case

A simple but important test case is a single constant velocity target with additive

Rayleigh noise. The target is tested for different speeds and heading directions, where

those parameters define the target trajectory in the time-range space and affect the system

performance. The different test cases for this scenario are summarized in Table 2, where

Ro denotes the target range, V0 is the target velocity, ao the target acceleration and a

denotes the targets heading direction relative to the radar site. The SNR is assumed to be

constant during the integration time, due to the low target speed and the resulting small

crossing distance. The primary threshold in the time-range space was chosen to give a
1

time-range Pfa of - and the secondary threshold value, E, which is taken as a fraction
30

of the maximum value of the accumulator cell in the parameter space.

Table 2. Single Target Test Cases

Test Case I Stationary Target Nonfluctuating Ro=20 Nm, Vo=0

Test Case II Constant Velocity Swerling I type Ro=20 Nm, Vo=25 Knots,

Target a =90O

Test Case III Accelerating Target Swerling I type Ro=20 Nm, Vo=5 Knots,

a=450 a0=0 .1 ft/sec2

Figures 13a-14a are the time-range space maps after primary threshold for test case I,

with SNR of 0 and 5 dB, respectively, and E matched to the peak value. Figures 13b-14b

present the true target trajectory and the Hough detector time-range back-projection, while

Figures 13c-14c show the corresponding Hough parameter space. The longest possible

trajectory for this particular time-space map is 162, occurring at the diagonal line, while

the maximum target trajectory length, which corresponds to this test case, is 100. We can
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observe the false detection declared in the case of SNR=O dB. These occur because the

detector prefers the longer lines created by the noise. In the case of 5 dB SNR, the peak

in the parameter space is higher, and the target is easily detected. The effect of choosing

an unmatched threshold is shown in Figures 15-16, where the optimal threshold is reduced

by 1 dB and applied to the test case I target, with SNR's of 0 and 5 dB, respectively. The

resulting false tracks demonstrates the sensitivity of the detector to the secondary

threshold level.

Test case II has a diagonal trajectory in the time-range space, which corresponds

to the longest line possible in the time-range map. Figures 17-18 show the time-range

space map and the corresponding parameter space for SNR's of 0 and 5 dB, respectively,

with matched ý. Again we can observe the clear peak in the Hough domain corresponding

to the target trajectory. The effect of unmatched ý is tested again and is presented in

Figures 19-20 for secondary threshold setting of 0.5 and 1 dB lower than the optimal one.

Test case III consists of a target changing its speed by a radial acceleration over the data

history. In order to detect this type of target, we need to map the data into a 3-D Hough

space. A 2D detector, like the one implemented in this thesis, can be used, and the results

of applying the algorithm to test case III are shown in Figures 21-22 for SNR of 2 and

7 dB, respectively. A lower threshold level is used, and we can see that several lines are

mapped back into the image space. Each of those lines represent a section along the

actual curved path. The true trajectory is tangent to those lines along the inside edge.

Although some uncertainty results from using a 2D system to detect a 3D space, it is not

extreme, and it is much easier to implement.

As discussed in Chapter IV, the Binary-Integration (BI) Hough detector has some

advantages in the multiple target scenarios and might be used as a preferred detection

scheme. To evaluate the effectiveness of this scheme, the BI Hough detector was applied

to test cases I-IIl, and the results are shown in Figures 23-27 for SNR's of 0 and 5 dB and

matched &. The detection performance reflected from those plots seems to be lower than

those obtained using the Hough detector itself, although for SNR's of 5 dB the original

target trajectory is being detected in all the test cases. Quantitative results for the
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performance degradation using this method, as compared with the results using the basic

algorithm, are presented in Section D.

2. Additive K Distributed Clutter Case

A more realistic scenario is the case of one target in the presence of sea clutter.

The clutter was simulated in accordance with the procedure described in Chapter IV,

where the clutter characteristics are simulated using Equation (3.28), in accordance with

the radar parameters and assuming up/down swell direction. We tested the algorithm

against test cases I-I1 for different interference levels where interference power is defined

as I=P +P =P (I +CNR), P. and Pn are the noise and clutter power, and CNR defines the

clutter to noise ratio. Figures 29-30 present the results obtained for test case I with

additive K-distributed clutter for signal to interference ratio (SIR) of 0 and 5 dB,

respectively, and matched ý. Similar results to the additive noise case are obtained for

this case, although the clutter has spikier nature than the noise. We can observe that the

target trajectory is detected in the case of SIR of 5 dB, while no detection is declared in

the case of 0 dB.

The results for test case 2 are presented in Figures 31 and 32 for SIR'S of 0 and

5 dB, respectively, with matched ý. The effect of unmatched threshold is demonstrated

in Figures 33-36 for test cases I-II and the two tested SIR's. The overall performance of

the detector in the presence of K-distributed clutter is close to the performance in the

noise-only case, so that the effect of the sea spikes, which affect the performance of

conventional detectors, has been eliminated.
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Figure 13. Test Case I, SNR=O dB, ý=20 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 14. Test Case 1, SNR=5 dB, ý=19.5 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 15. Test Case 1, SNR=O dB, ý=18.5 dB.
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(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 17. Test Case II, SNR=O dB, ý=22 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.

(c) Parameter Space Mesh Plot.
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Figure 20. Test Case II, SNR=5 dB, ý =20 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
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Figure 21. Test Case III, SNR=2 dB, ý=16 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 22. Test Case III, SNR=7 dB, =20 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 26. Test Case II, SNR=5 dB, ý=18 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot (with Binary Integration).
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Figure 27. Test Case Ill, SNR=5 dB, ý=16 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot (with Binary Integration).
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Figure 29. Test Case I, with Additive K-distributed Clutter, SIR=5 dB, &=21 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Inage Space.
(c) Parameter Space Mesh Plot.
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Figure 30. Test Case II with Additive K-distributed Clutter, SIR=0 dB, =23 dB.

(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 31. Test Case II, with Additive K-distr'ibuted Clutter, SIR=5 dB, • 22 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 32. Test Case III, with Additive K-distributed Clutter, SIR=5 dB, =22 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 33. Test Case I with Additive K-distributed Clutter, SIR=O dB, ý=16 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.

(c) Parameter Space Mesh Plot (with Binary Integration).
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Figure 34. Test Case I, with Additive K-distributed Clutter, SIR=5 dB, •=17 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in lInage Space.
(c) Parameter Space Mesh Plot (with Binary Integration).
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Figure 35. Test Case II with Additive K-distributed Clutter, SIR=O dB, ý=18 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot (with Binary Integration).
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Figure 36. Test Case II, with Additive K-distributed Clutter, SIR=5 dB, ý=19 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot (with Binary Integration).
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C. TWO TARGETS TEST SCENARIO

As discussed in Chapter IV, one of the potential problems using the Hough based

detector occurs when integrating time-range maps containing more then one target. Two

multiple target scenarios are considered to determine the performance in those cases. The

first one, test case IV, defines two targets with crossing trajectories and RCS ratio of 1:4

between the targets. Figure 37 presents the time-space and the corresponding parameter

space for test case IV with SNR of 7 dB. Although the target trajectories are similar in

length, we can observe the size of the different peaks in the parameter domain resulting

from the targets relative size. Due to the high SNR in this test case and with an apriori

knowledge about the existence of two targets in the integration area, we can set the

secondary threshold, so that the two targets are detected. When we consider the same

scenario with low SNR, the small target is masked by the noise, and it is impossible to

detect it using a single threshold. This phenomena is demonstrated in Figure 38 for a SNR

of 2 dB. Applying the BI Hough detector to the test case IV targets are presented in

Figures 40-41 for SNR's of 7 dB and 2 dB, respectively. This results in the emphasis of

the small target in the parameter space, and an equal peak size in the parameter space for

the two targets is observed. Applying a simple single threshold in this case enables

detection of the two targets.

The second case of interest is the case of a small target masking by a very large

target. This is defined for the case of high SNR in test case V, which defines two

crossing targets with RCS ratio of 1:10 between the targets. Figure 41 shows the time-

range domain and the resulting Hough parameter for test case V with SNR of 15 dB. In

spite of the fact that the two target trajectories are very close in length, the large target

peak masks the small target, since it is much higher in power; and as a result the small

target can not be detected. The BI Hough detector was applied to this case, and the results

are shown in Figure 42. The level of the two targets peaks in the Hough domain are

almost equal now, which enables detection of the two targets using a single threshold.

However, the BI Hough transform has some performance degradation for low SNR's,

which is discussed in Section C.
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Figure 37. Test Case IV, SNR=7 dB, ý=16 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 38. Test Case II, SNR=2 dB, ý=12 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in lImage Space.
(c) Parameter Space Mesh Plot .
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Figure 39. Test Case IV, SNR=7 dB, ý=16 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot (with Binary Integration).

74



"0 . * *'• | II * I. .I1 * I I

0 - 1 .. .•G _10 "" " '" " * °' "" . "."
CI) .o. ° .. .

E 15"

-20-. :" ". " " " .
. .. ." *. * o. • "

- 2 5 1 i " , i • * , ,, ' " ' ;
0 20 40 60 80 100 120

Range

(a)
0

-5-- true

-1 -- detectedS-10

E -15
*1-

-20

-25
0 20 40 60 80 100 120

Normalized Range in Ft

(b)

40

20

0-0100' 51010

50 0 -50 -100 0 50 105

Rho Theta
(c)

Figure 40. Test Case IV, SNR=2 dB, =12 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot (with Binary Integration).
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Figure 41. Test Case V, SNR=15 dB, C=20 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot.
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Figure 42. Test Case V, SNR= 15 dB, =20 dB.
(a) Time Range Space after Primary Threshold.
(b) True and Detected Target Trajectory in Image Space.
(c) Parameter Space Mesh Plot (with Binary Integration).
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D. DETECTION PERFORMANCE

1. Additive Rayleigh Noise Case

The first step in performance evaluation is the determination of the probability of

false alarm as a function of the secondary threshold. We simulate Rayleigh noise in

image space, with image and parameter space dimensions, as defined in Section A. The

number of accessible Hough cells, which is determined by applying all ones in the time-

range space, was found to be 8192 for this particular grid choice. The primary threshold

was then set to 1/200, which is chosen to reduce the computational load. To obtain

accurate results for the Pfa, 50 0 0 simulations were used for each secondary threshold point,

and the results were averaged. Figure 43 presents the results for the probability of false

alarm as a function of secondary threshold.

To find the probability of detection, a single target was included in the simulation.

The test target is modeled as a nonfluctuating target, approaching the radar site with

different speeds, corresponding to a diagonal line in the time-range space. To obtain

accurate results, the algorithm was tested with different SNR's and 500 repetitions per

SNR point. Figures 44-46 show the resulting detection curves for target speeds of 0, 5,

and 25 knots, respectively. The different curves in those plots represent different

secondary threshold settings corresponding to different Pfa's derived from Figure 43.

Figures 48 -50 show the corresponding detection curves for the BI Hough algorithm with

Pfa, as a function of the secondary threshold derived from Figure 37. Observing the

detection curves of the BI Hough algorithm, we find about 1 dB performance degradation

relative to the Hough detector. The Hough detector performance is compared against the

optimum detection process and binary integration detection process performance. Figure

51 presents the Pd as a function of SNR for a given Pfa for a stationary target with a Pfa

of 3" 10 4. Figure 52 presents the performance comparison for target speeds of 5, 15 and

25 knots. Figures 53-54 show the performance comparison for the same scenario with Pfa

of 1. 10-7. The best detection performance for the conventional schemes are achieved, as

expected, when the target is stationary. When the target is moving, collapsing loss

degrades the detection performance of those detectors. The Hough detector performance
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improves as the target speed increases, resulting in longer target line in the time-range

domain. Figure 55 shows significant results obtained by estimating the processing

gain/loss of the detector, which is compared to the optimal detector for different speeds.

This figure shows the range-walk problem exists when applying traditional detection

techniques. The Hough detector does not suffer from this problem, and its performance

improves as the target speed increases.

2. Additive K-Distributed Clutter Case

Detection performance in the case of additive K-distributed clutter is evaluated in

a similar way to the noise only case. The probability of false alarm as a function of the

secondary threshold is shown in Figure 56, where the time-range and Hough space

parameters are as defined in Subsection 1. Comparing the results obtained in this case to

those presented in Figure 43 for the noise-only case, we observe that the Pf,, or the same

secondary threshold setting, is higher, due to the spiky nature of the clutter.

The probability of detection was determined using the test targets defined in

Subsection 1. The number of repetitions in this case was limited to 100 per SNR point,

due to the large computational load in the K-distributed clutter simulation. Figures 57-59

present the resulting detection curves for a scenario consisting of target embedded in k-

distributed clutter plus noise approaching the radar site in velocities of 0, 5, and 25 knots,

respectively. The different curves in those plots represent different secondary thresholds.

Comparison of the Hough detector to traditional radars is done by simulating a square law

detector and evaluating its performance for the same scenarios. Figure 61 presents the

performance comparison for a nonfluctuating stationary target, a 25 knot nonfluctuating

target and a Pfa of 8-1 0-. We observe that the Hough transform performance improves as

the target speed increases. The spikier nature of the clutter, which force us to use a higher

threshold to achieve predefined Pfa level, results in causes degradation in the performance

comparing to the noise only case. Figure 60 presents the processing gain/loss for this

case, as compared to an envelope detector for different target speeds. We observe that the

range-walk problem is solved in this case, as in the noise-only case although the

processing gain is lower in higher velocities (2 dB).
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Figure 50. Binary integration Hough Detector Pd as a Function of SNR for a
Nonfluctuating 25 knot Target with Additive Rayleigh Noise Scenario.
Different Curves Denote Different secondary Threshold Settings.
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(b) Target Speed 25 Knots.
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(a) Target Speed 5 Knots.
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E. PARAMETERS SELECTION

1. Parameter Space

To determine the optimum granularity in the Hough space, we consider a

nonfluctuating 25 Knot constant velocity target using the additive Rayleigh noise scenario.

Using the procedure described in Section D we evaluate the detection performance, i.e.,

Pd as a function of required SNR, for the different granularity in the parameter space.

Figure 62a shows the required SNR to achieve a Pd of 0.9, with secondary threshold of

12 dB (corresponding to Pfa of 1 10-"). The 0 granularity was fixed at A 0 = 10 and A p

values were varied between 0.250 to 2.75%. Figure 62b presents the required SNR to

achieve Pd= 0.9 for the same scenario with fixed A p and AO ranging from 0.25' to

2.75%. The results obtained for the different granularity cases follow the general expected

behavior. Selecting a very fine granularity results in splitting the target into several

parameter cells, while a coarse granularity causes the noise to add up in fewer cells,

forming false peaks in the parameter space, which dictates higher values of ý to achieve

the same Pd. The optimum choice is close to the granularity hat we used in the simulation,

i.e., AO=1" and Ap=l.

2. Primary and Secondary Thresholds

The second factor that affects the Hough detector performance is the primary and

secondary threshold settings. As discussed in Chapter IV, the Pfa is determined by both

the primary and secondary thresholds. To determine the optimal values for each, we

evaluate the Pd as a function of required SNR for different values of primary threshold

and apply secondary threshold s that yields constant Pfa. Figure 63 shows the results for

the required SNR to achieve Pd of 0.9 and a Pfa of 1.10', as a function of the C for the

scenario of nonfluctuating 25 knot constant velocity target with additive Rayleigh noise.
1 1

The primary threshold is varied from to -. We observe that the optimum choice for1000 2

the primary threshold is about i•" The primary threshold used to evaluate the detection
301

performance is -•, which is a compromise between optimum detection performance and

the required computing power when applying a low primary threshold.
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(b) AX p = 1, 0• varies.
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VI. CONCLUSIONS

In this thesis, the track-before-detect processing method, using the Hough transform

for target detection and tracking by a high resolution search radar, was examined. An efficient

algorithm for Hough detector implementation offered by Carlson, Evans and Wilson [Ref 1 ],

was used, and a comprehensive simulation was built to test the algorithm for several

scenarios. The system performance was evaluated and compared against traditional detection

schemes. The detection capability of the detector for small targets in the presence of noise and

sea clutter, was proven, as well as, the tracking feature obtained by the system as part of the

detection process, which eliminates the need to revisit the target for tracking information.

The algorithm presents an improved detection performance, compared to conventional

detection schemes, when the scenario is composed of moving targets embedded in Rayleigh

noise or K-distributed sea clutter. This provides a solution to the range-walk problem, which

occurs in traditional detection schemes where targets with inter-cell motion are not

completely integrated. The problem is solved using this method, since the algorithm detects

trajectories rather than single resolution cells. A scenario with a 25 knot constant velocity

target in additive noise, shows a processing gain of about 3 dB, relative to the optimal

stationary detector for this particular parameter selection. When considering a stationary

target with additive Rayleigh noise, the detection performance is significantly degraded

compared to the optimal detector, or to the binary integration detection process. The required

SNR to achieve Pd =0.9 with a Pf, of 10- is about 5 dB for this case. This results mainly from

the limited integration time that the detector uses and the resulting relatively short trajectories

in the time-range domain. The detector employed was designed to detect straight trajectories

in the time-range domain. However, the algorithm was able to find the tangent to the curves

trajectory of an accelerating target, which indicates the feasibility of using this algorithm in

more complex scenarios than a constant speed target. Evaluating the detector performance

in the presence of K-distributed sea clutter, which is the main interest of maritime search

radars, shows promising results and the processing gain for a 25 knots constant velocity
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target was found to be 1.5 dB.

The main drawback of the method is its sensitivity to parameter selection, both in the

time-range space and in the Hough space. The radar parameters must be well matched to the

target's kinematics to enable satisfactory results. Using unmatched radar range resolution, or

scan rates, causes the target to stay in the same resolution cell and reduces the detector

performances dramatically, as no significant line in the time-range domain exists. The same

performance degradation results from improper selection of parameter space granularity.

Using course granularity leads to noise adding up to significant lines while fine granularity

results in the target splitting into several parameter cells. Optimization evaluation for the

Hough space granularity reveals that the optimum values for A 0 and A p should be

determined in accordance with the time-range and Hough space parameter selection. Another

trade off that should be considered when applying the algorithm is the one between primary

and secondary threshold settings. The results obtained in this work show that an optimal

choice between the two thresholds exists. However, choosing a low primary threshold level

implies higher computational load; therefore, the threshold setting should be selected in

accordance with the available computing power. This might dictate using higher than

optimum primary threshold level to enable real time application of the algorithm. A possible

detector problem occurs for multiple target scenarios when one target masks the other

targets, or when small targets are masked by noise. One optional solution uses the binary

integration Hough transform, which allows multiple target resolving; however, the detection

performance in this case is degraded by about 1 dB. Other alternatives to solve this problem

involve multiple threshold algorithms and were not investigated in this thesis.
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APPENDIX A. MATLAB SOURCE CODE

The algorithms described in chapter IV were implemented using MATLAB software. The

different functions are listed below.

A. HOUGH TRANSFORM

function [RTQ,angnum]]=ht(bi,type,dat)
% Filename : ht.m
% Title: Hough Transform
% Date of last Revision: 10 Mar 95
% Comments:
% This m file computes the Hough transform using the classical H- Transform.
% Input variables:
% bi- flag which indicates if we perform HT (0) or binary integration HT (1)
% type- Defines the environment simulation noise(0) or noise plus clutter (1)
% dat-File name contains the radar, target and space parameters
% Output variables:
% RT- Matrix containing the Hough transform values of the radar echoes.
% Q- Matrix contains the power of the accumulative Hough transform
% angnum- Number of required angle bins in the Hough transform.
% Associated Matlab Functions:
% rtmap.m (generates time-range map)
% iht.m
% Associated Matlab files
% rdata.m (radar parameters)
% Initialization
eval([dat]);
[trmap,pwr,mgres,pmap,echo,T,dt I =rtmap(dat,type);
angnum-= 18 1/angres;
N=linspace(0, 180,angnum);
tl-0:dt:T;
t=0:length(tl)-1;
if bi==1

pwr=ones(size(pwr));
end
% Hough transform
H2-[sin(N'*pi/l80)];
Hl=[cos(N'*pi/180)];
dimen=size(trhit)
sumlen--0;
for p=1:dimen(2)

len(p)=max(size(fmd(trhit(:,p))));
for q = :len(p)

R(1 :length(N),sumlen+q)=Hl *trhit(q,p)+H2*tl(p);
end
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sumlen=sumlen+len(p);
end
if sum(len)~-O

offset=abs(min(R(:)));
end
RT=(round((R+offset.*ones(size(R)))./rhores))+ 1;
if ( max(RT(:)))>rhonum

RT=RT.*rhonum ./max(RT(:));
end
dimh=size(RT);
Q=zeros(angnum,max(RT(:));
for 1= 1:dimh(2)

for k=-:dinih(l)
Q(k,RT(k,l))=Q(k,RT(k,l))+pwr(1);

end
end

B. INVERSE HOUGH TRANSFORM

function [rho,tet,mg]=iht(Q,Tdt)
% Filename : iht.m
% Title: inverse Hough Transform
% Date of last Revision: 10 Mar 95
% Comments:
% This m file computes the inverse Hough transform
% Input variables:
% Q- Matrix contains the power of the accumulative Hough transform
% T- Integration time in time-range domain
% dt - Time interval between processed dwells
% Output variables:
% rho- The rho value where the peak in the Hough domain was detected
% tet- The theta value where the peak in the Hough domain was detected
% amg- Range locations of the detected trajectory
% Associated Matlab Functions:
% ht.m
% trmap.m
% Associated Matlab files
% rdata.m
t=0:dt:T;
snr2=max(Q(:))/0.913;
[tet,rho]=find(Q>snr2);
ntr-length(rho);
for test= 1:50

if nrt>3
snr2=snr2*1.0233;

end
end
for k= 1 :length(rho);

rho 1 (z)= (rho(k)- 1)*rhores-offset;
rO(k)= rhol (k)/cos(tet(k)*pi/180);
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a(k)=-tan((90-tet(k))*pi/180);
rng(k,:)=t./a(k)+r0(k);

end

C. RADAR DATA PARAMETERS

% Filename : rdata.m
% Title: radar parameters
% Date of last Revision: 10 Mar 1995
% comments:
% m file that contains the simulated radar and target parameters
% Input variables:
% None
% Output variables:
% Radar and target parameters as defined in the program
% Associated Matlab Functions:
% ht.m
% iht.m
% trmap.m
% Associated Matlab files
% None
% Radar and environment parameters
rpm=240; % antenna speed
sigml-10; % targetl cross section (m^2)
sigm2= 10; % target2 cross section (m^2)
pt= le6; % radar peak power (w)
gt=le4; % radar antenna gain
lambda=0.1; % radar wavelength
scan=100; % # of antenna scans used
pw=0.02; % radar pulse width
thetag=0.5; % Grazing angle
rc= 100; % cross range resolution
sl=1/3; % swell direction
kl=1.7; % polarization factor
% Targets parameters
tetal=0; % targetl heading ( relative to the radar)
teta2--0; % target2 heading ( relative to the radar)
r01=10; % targetl initial range
r02= 10.005; % target2 initial range
v01=20; % targetl speed
v02=25; % target2 speed
snrdb-20 % SNR in dB
num= 1; % number of targets to be simulated
% Time-range and Hough space parameters
rngnum=-128; % number of range cells to be integration in the time-range space
rhores= 1; % defines the granularity for rho in the Hough domain
angres= 1; % defines the granularity for theta in the Hough domain
rhonum=256; % defines number of the cells in the transform
pfa= 1/100; % defines the requires primary P, in the time-range domain
bi=l; % flag indicates if we perform HT (0) or binary integration HT (1)
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type= 1; % Defines environment simulation noise(0) or noise plus clutter (1)

D. TIME-RANGE MAP GENERATION

function [trmap,pwr,mgres,pmap,echo,Tdt ] =rtmap(dat,type)
% File name: rtmap.m
% Title: Time-Range Map Generation
% Date of last revision: 10 Mar 1995
% Comments :
% This m file creates simulated time range map composed of target noise and clutter
% Input variables:
% dat- File name contains the radar and target parameters
% type- Defines the environment simulation noise(0) or noise plus clutter (1)
% Output variables:
% T - Total time length in which the radar echoes are processed
% dt - Time interval between processed dwells
% pwr -Vector containing the power of the received radar echoes.
% trmap - Matrix containing the hits crossing primary threshold (2 by length(t))
% rangres - The radar range resolution ( in ft)
% pmap- Vector contains the time-range hits power
% Associated matlab functions
% ht.m
% iht.m
% Associates matlab functions
% rdata.m
eval([dat]);

dt=60/rpm;
T=scan*dt;
t=0:dt:T;
rangres- pw* 150*3.281;
snr=(10)^(snrdb/10);
[rl,r2,P1,P2]--tgt(t,dat);

P=(PI+P2)/2;
means=mean(P);
sigmn= sqrt(means/(2*snr));
thers=-sigmn*log(pfa);
pmap=zeros(scan,mgnum);
for i-1:scan+1

pmap(i,r(i)+ 1)= pmap(i,rl(i)+ l)+(Pl(i));
pmap(i,rl(i)+ 1)= pmap(i,r2(i)+ 1)+(P2(i));

end
v-map=sqrt(pmap);
rtot=zeros(length(t),mgbin);
if type==0

for i= l:min(size((vmap)))
[noise]=rayn(mgbin);
noisei= (sigmn.*noise(:, 1))';
noiseq= (sigmn.*noise(:,2))';
echo=sqrt((vmap(i,:)-noiseq).^2+noisei. ^2);
loc=fmd((echo(i,:))>thers);
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pwr(i,:)=zeros(size(temp3));
pwr(i,loc)=echo(i,loc);
rtot(i,:)=(loc,zeros(1,mgbin-length(loc))];

end
elseif type= = 1

pwr[]1;
for i= 1:min(size((vmap)))

inrf=kcltr(means,rngbin,dat);

loc=find((echo(i,:))>thers);
pwr=[pwr echo(loc)];
rtot(i,:)=(loc,zeros(1,rngbin-length(loc))];

end
end
trhit= [rtot'J;

E. TARGET SIMULATION

function [rl,r2,P1,P2]=tgt(T,dt,dat)
% File name: tgt.m
% Title: target simulation
% Date of last revision: 10 Mar 1995
% Comments :

% This m file creates simulated targets in accordance with the radar equation
% Input variables:

% dat - File name containes the radar and targets parameters
% T - Total time length in which the radar echoes are processed
% dt - Time interval between processed dwells

% Output variables:
% rl,2- Target range
% P 1,2- Target received power

% Associated matlab functions
% trmap.m

% Associated matlab files
% rdata.m

evalidati)
t=O:dt:T;
rl=r01*6076-(vO1 *6076I3600)*t*cos(tetal);
r2=r02*6076-(v02*6O76I3600)*t*cos(teta2);
ri =floor((rl ./rngres)))+0.5);
r2=floor((r2./mgres)))+0.5);
P1 ((pt*gt^2*labbda'^2*sigm).I((4*pi)^'3.*rlI3.2 18).^4));
P2=((pt*gt'^2*labbda^2*sigm).I((4*pi)^3.*r2I3.2 18). ^4));
if num==1

end

F. RAYLEIGH NOISE SIMULATION

function [ray]= rayn(N)
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% File name: rayn.m
% Title: Rayleigh noise Simulation
% Date of last revision: Mar 10 1995
% Comments :

% This m. file simulates Rayleigh noise
% Input variables:

% N- Number of noise points to be simulated
% Output variables:

% ray- Matrix containing the I and Q components of the noise (2xN)
% Associated Matlab functions:

% trmap.m.
% Associated Matlab Files:

% None
n=1:N;
rndl =randn(size(n));
rnd2=ranidn(size(n));
md='sqrt(mdl .'2+md2.^2);
mndang=2*pi.*rand(size(n));
ray= [rnd'.*sin(rndang),rnd'.*cos(rndangyj];

G. K-DISTRIEBUTION CLUTTER SIMULATION

function [cltr] =noisel1(sig,N,dat)
% Filename : kcltr.m
% Title: k distributed clutter simulation
% Date of last Revisio n: 10 Mar. 1995
% comments

% This m. file simulates distributed clutter
% Input variables:

% sig-Signal power
% Output variables:

% cltr-Matrix containing the I and Q components of the interference (2xN)
% Associated Matlab functions

% tnnap.m.
% Associated matlab files

% rdata.m.
eval(dat);
sf= 10^~(0.67*log10(thetag)+0.625*log lO(pw* le3*rc/3O)+s1-kl);

frfloor(sf); a=sf-f; 1=0;
p=exp(1)/(a+exp(1));
c=~(a+exp(l))I(exp(1)*gamma(a+ 1));
cnt=floor(2*c*s);
b=sqrt(2*sflpc);
ran=rand(N,f);
for i= l:N

x(i)=-log(prod(ran(i,:));
g(i)=x(i);

end
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if a~0
for i= 1:cnt

ufrand; vfrand;
if u<p

y=v^(1/a); q=exp(-y);

else
y--l-log(v); q=y^(a-1);

end
if rand<=q

1=1+1; g(l)=x(1)+y;
end
if 1==N

break
end

end
i=1:N;
chi(i)=(sqrt(g(i)))./b;
inrf(i)=(sqrt((chi(i).)^2+0.5*pn)).*sqrt(-2*log(rand(size(i))));
mdang=2*pi.*rand(size( inrf));

cltr=[( inrfl.*sin(mdang))',( inrf.*cos(mdang))];

H. HOUGH DETECTOR PROBABILITY OF DETECTION

function [pd ]=prdet (pl,p2,sl,s2 ,simlen,bi,type,dat)
% Filename :prdet.m
% Title: probability of detection of the Hough detector
% Date of last Revision: 10 Mar 1995
% Comments:
% This m file computes probability of detection (Pd) of the Hough detector as a
% function of the secondary threshold, for different primary threshold settings
% ( in steps of 0.25 dB)
% Input variables:
% pl,p2- Primary threshold boundaries (in dB)
% sl,s2- Secondary threshold boundaries (in dB)
% bi- Flag which indicates if we perform HT (0) or binary integration HT (1)
% simlen- Number of repetitions in each SNR point ( primary and secondary)
% type- Defines the environment simulation noise(0) or noise plus clutter (1)
% pfa- Defines the requires primary Pf. in the time-range domain
% Output variables:
% pd- Matrix containing the pd
% val - Matrix containing the primary and secondary threshold used for pd
% Associated Matlab functions:
% ht.m
% iht.m
% Associated Matlab files:
% none
m=0,n=0;
for snr2db =sl:0.25:s2

m=m+l;
snr2= 10^(snr2db/10);
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for snrdb= pl:0.2 5 :p2

n=n+l;
hitl=0
for count= 1 :simlen

[RT,Q,angnum] =ht(bi,type,dat);
[rho,tet,mg] =iht(Q,t);
for i= l:length(tet)

if tet(i)<-=reftet(tgt)+ 1 & tet(i)>=reftet(tgt)- 1
if rho(i)-offset<=refrho(tgt) + 1& rho(i)-offset>=refrho(tgt)-I

hit(i)= 1;
end

end
end
if sum (hit)>O

hitl--hitl+ 1;

hit=0;
end

end
pd(m,n)=hitl ./simlen;
hitl =0;

end
end
val=[sl:s2;pl:p2];

I. HOUGH DETECTOR PROBABILITY OF FALSE ALARM

function [pfa ]=prfa (sl,s2,simlen,bi,type,dat)
% Filename : prfa.m
% Title: probability of false alarm of the Hough detector
% Date of last Revision: 10 Mar 1995
% Comments:
% This m file computes probability of detection (Pf) of the Hough detector as a
% function of the secondary threshold (in steps of 0.25 dB)
% Input variables:
% sl,s2-Secondary threshold boundaries (in dB)
% simlen-Number of repetitions in each SNR point ( primary and secondary)
% dat-File name contains the radar and target parameters
% Output variables:
% pfa-Matrix containing the probability of false alarm
% val-Vector containing the secondary threshold used for the Pfa
% Associated Matlab functions:
% ht.m
% iht.m
% Associated Matlab files:
% none
m=O ;
for snr2db =sl:0.25:s2

m=m+l;
snr2= 10^(snr2db/l0);
for count= l:simlen
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[RT,Q,angnum] =ht(bi,type,dat);
[rho,tet,mg] =iht(Q,t);
hit(count)=length(rho);

end
pfa(m)=sum(hit)/simlen;

end
val=sl:s2

J. ALBERSHEIM METHOD

function [snr,pd]-=alber(M,N,DC,pfa)
% File name: alber.m
% Title: albersheim metod
% Date of last revision: Mar 10 1995
% Comments :
% This m files implement the albersheim equation-required snr to
% obtain a given pd and pfa including collapsing loss
% input varaibles:
% M-Overall number of Signal cells
% N-Number of overall cells
% pfa-Required probability of false alarm
% DC- Detectablity factor for a coherent process ( vector size lx99)
% Output variables:
% snr-Required snr to obtain a given Pd and p,
% pd- pd corresponds to the snr
% Associated Matlab Functions:
% None
% Associated Matlab Files:
% None

pd=0.01:0.01:0.99;
A=log(0.62/pfa);
B=log(pd./(1-pd));
snrl- =-5*log 10(N)+(6.2+4.54/(sqrt(N+0.44))).*log 10(A+0. 12.*A.*B+ 1.7.*B);
rho=N/M;
de--10.^(DC./10);

1= 10*loglO((l+sqrt(l+9.2*rho*M.Idc)).I(1+sqrt(1+9.2*M./dc)));
snr=snrl +1;

K. BINARY INTEGRATION THRESHOLD

function [q]=binther(N,M,PFA)
% File name:binther.m
% Title: binary integration threshold
% Date of last revision: Mar 10 1995
% Comments :
% This m file computes the required threshold level needed to obtain overall PFA
% input varaibles:
% M- Overall number of Signal cells
% N-Number of overall cells
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% PFA- Overall PFA required for the binary integration process
% Output variables:
% pfa-Single pulse probability of false alarm
% Associated Matlab Functions:
% binsnr.m
% Associated Matlab Files:
% None
steps=-0. 1;
test= 100;
x= le-9;
k=M:N;
delt= le-6*PFA;
for kk=M:N

noverk(kk-M+ 1)=prod(1 :N)/(prod(1 :N-kk)*(gamma(kk+ 1)));
end
for loop= 1:500

p-x.^k;
q=(1-x).^(N-k);

r=sum(noverk.*p *q);
if abs(r-PFA)<=delt

break
else
if sign(test)--sign(r-PFA)

steps=-0.5*steps;
end

end
x=x+steps;
test= r-PFA;
end
if loop==500

input ('no convergence in Pfa','s')
break

end
q =-log(x);

L. BINARY INTEGRATION PROBABILITY OF DETECTION

function[pd] =binpd(N,M,PD)
% Title: binary integration probability of detection
% Date of last revision: Mar 10 1995
% Comments :
% This m file computes the requires single pulse Pd needed to obtain overall PD

% input varaibles:
% M-Overall number of Signal cells
% N-Number of overall cells
% PD-Overall PD required for the binary integration process
% Output variables:
% pfa-Single pulse probability of detection
% Associated Matlab functions:
% binsnr.m
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% Associated Matlab Files:
% None
for 1= 1:length(PD)

test= 100;
x= le-4;
steps=-0.1;
k=M:N;
delt= le-6;
for i=M:N

noverk(kk-M + 1)=prod(i+ 1 :N)/ prod(l:(N-i));
end
for loop= 1:500

p=x.^k;
q--(1-x).^(N-k);

r=sum(noverk.*p.*q);
if abs(test-PD(l) )<=delt

break
else

if sign(test)-=sign(r-PD(pp) )
steps= -0.5 *steps;

end
x=x+steps;

end
clear p q
test= r-PD(pp);

end
if loop==5 0 0

input ('no convergence in PD','s")
break

end
pd(r)=x;
clear r k i noverk

end

M. BINARY INTEGRATION DETECTION PERFORMANCE

function[SNRI=binpdnr(N,PD,PFA)
% File name: binsnr.m
% Title: binary integrationprobability of detection
% Date of last revision: Mar 10 1995
% Comments :
% This m files computes the required snr to obtain a given pd and pfa
% using binary integration processing
% input varaibles:
% M- Overall number of Signal cells
% N-Number of overall cells
% PD- Overall PD required for the binary integration process
% Output variables:
% stir- Required SNR to achieve to defined PD
% Associated Matlab functions:
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% binther.m
% binpd.m
% Associated Matlab Files:
% None
M=0.4*N;
test= 100;
delt=0.0001;
steps=-.1;
snr=le-2;

[q] =binther(N,M,PFA);
[pd]=binpd(N,M,PD);
for count= 1:length(pd)

for loop= 1:1000
h(1)=exp(-snr);
f(1)=q *exp(-q);
d(1)=h(1);
for k=2:50

f(k)=q *f(k- 1)/k;
d(k)=snr*d(k- l)/(k- 1);
h(k)=h(k-1)+d(k);

end
Q(count)= 1-sum(f.*h);
if abs(Q(count)-pd(count))<=delt

break
else

if sign(test)~=sign(Q(count)-pd(count))
steps=-0.5 *steps;

end
snr=snr+steps;

end
if loop==500

input('no convergence','s)
break

end
test= Q(count)-pd(count);

end
SNR(count)=snr;
clear d h f Q

end

N. GRAPHICS UTILITY

% Filename : graplot.m
% Title: plotting utility
% Date of last Revision: 10 Mar 1995
% Comments:
% This m file plots the time-range space and the Hough space parameters
% Several plotting options are available to choose from.
% input varaibles:
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% None
% Output variables:

% None
% Associated Matlab functions:

% ht.m
% iht.m
% alber.m
% binsn.m

% Associated Matlab files:
% rdata.m

close all
k=menu (,Select Required Plot",'Raw Data Mesh Plot',Raw data Time-Power PlotW.Range -Time Plot',Hough
X-form Mesh Plot','Hough X-form Rho-Theta Plot');
if k==1

figure(1)
yl'tl-T;
x1=0:mgnurn;
subplot(21 1),surf(xl',yl, 1O*loglO(echo))
ylabel('Tiine (sec)')
xlabel('Range')
zlabel('Power (db)')

elseif k==2
stairs(tl-T, 1O*log lO(pmap)), grid
axis([-T 0 (min(l0*loglO(pmap)))-1O (max(l0*log1O(~pmap)))+1O 1)
xlabel('tiie')
ylabel('power (db)')

elseif k==3
hold on
plot(R1,tl-T,Yr)
plot(R2,tl-T,Yr)
for i=' :length(rhol)

plot(rng(i,:),tl-T,'b')
end
xlabel('Range'),ylabel(Trime'),grid
title([lTarget echos range res =', num2str(rangres),'ft'I)

elseif k==4
xl=0:angnum-l;
yl =nin(R(:)):rhores:max(R(:));
surf(xl' ,yl,Q'),grid
xlabel('Theta')
ylabel('Rho')
zlabel("Power')
title( Hough space parameters')

elseif k==5
N=linspace(O, 180,angnum);

plot (N,R,Yr),grid
xlabel('theta')
ylabel('Rho')

title( Hough space parameters')
elseif k==6
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plot(10*log 10(SNR),PD,'b'),grid

hold on
plot(10*log 10(snr),pd,'r')
xlabel('SNR (dB)'),ylabel('Pd'),title('Binary Integration Detection Performance')
text(1,1,'Pfa' ,num2str(pfa))
legend('Optimal detector','binary integration')

end

0. MAIN PROGRAM

% File name:main.m
% Title:main program
% Date of last revision: Mar 10 1995
% Comments :
% This m file activates the different programs
% input varaibles:
% simpar- File name contains the simulation parameters for the performance comparison
% Output variables:
% None
% Associated Matlab functions:
% ht.m
% iht.m
% alber.m
% binsnr.m
% graplot.m
% Associated Matlab Files:
% rdata.m
dat=input('Enter data file Name');
k=menu (Select Required program',Hough detector','Hough detector Pd',llough detector pfa','performance
comparison');
if k==1

[RT,Q,angnum]=ht(bi,type,dat)
[rho,tet,mg]=liht(Q,T,dt);

elseif k==2
load simpar;
[pd ]=prdet (pl,p2,sl,s2 ,simlen,bi,type,dat);

elseif k==3
load simpar;
[pfa I=prfa (sl,s2,simlen,bi,type,dat);

elseif k= =4
load comerpar;
[snr,pdl=alber(M,N,DC,pfa);
[SNRI]=binpdnr(N,PD,PFA);

end
graplot
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